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THE DISTURBANCE DUE TO A LINE SOURCE IN A
SEMI-INFINITE ELASTIC MEDIUM

By E. R. LAPWOOD, Department of Geodesy and Geophysics, University
of Cambridge, and Yenching University, Peiping West, China

(Communicated by H. Jeffreys, RR.S.%Received 2 February 1948—Revised
16 October 1948)

A A

When a cylindrical pulse is emitted from a line source buried in a semi-infinite homogeneous
elastic medium, the subsequent disturbance at any point near the surface is much more complex
than for an incident plane pulse. The curvature of the wave-fronts produces diffraction effects, of
which the Rayleigh-pulse is the most important.

In this paper the exact formal solution is given in terms of double integrals. These are evaluated
approximately for the case when the depths of source and point of reception are small compared
with their distance apart, allowing a description of the sequence of pulses which arrive at the point
of reception. When that point is at the surface and distant from the epicentre, the disturbance
there can be regarded as made up of the following pulses, in order of arrival: (a) for initial P-pulse
at source: P-pulse, surface S-pulse and Rayleigh-pulse; (4) for initial S-pulse: surface P-pulse,
S-pulse and Rayleigh-pulse. If the initial pulse has the form of a jerk in displacement, the P- and
S-pulses arrive as similar jerks, whereas the Rayleigh-pulse is blunted, having no definite beginning
or end. The surface P-pulse takes a minimum-time path and arrives with a jerk in velocity. The
surface S-pulse, on the other hand, is confined to the neighbourhood of the surface and arrives as
a blunted pulse. Moreover, part of the S-pulse arrives before the time at which it would be expected
on geometrical theory.

Although derived on very restricting hypotheses, these results may throw some light on seismo-
logical problems. In particular, it is shown that when the sharp S-pulse of ray theory is converted
by the presence of the surface S-pulse and the spreading of S into a blunted pulse, the duration of
this composite pulse is of the same order of magnitude as the observed scatter of readings of Sg and
other distortional pulses from near earthquakes.

OF

1. INTRODUCTION

The propagation of tremors over the surface of a semi-infinite elastic solid * was first discussed
by Lamb (1904) in a classic paper. -He considered the surface displacements at a distant
point which occur as a result of the application of a vertical or horizontal impulse along a line
in the surface. He was able to demonstrate, after intricate analysis, that the required
displacement will show a sequence of P-pulse,t S-pulse and Rayleigh-pulse.

Lamb also indicated a method of attack for the case when the initial disturbance was
located at a certain depth below the free surface of the solid. His method of obtaining the
formal solution (involving a double integration) is used in §§4 and 5 below, though the
disturbance here considered differs in type from his. Lamb showed further that the solution
for the corresponding three-dimensional problem follows in general that of the two-
dimensional one.

) §

S

SOCIETY

OF

* T am much indebted to Professor Harold Jeflreys, who proposed the subject of this paper and has

given valuable advice.
t Throughout the following work the abbreviations ‘ P-pulse’ and “S-pulse’ will be used to denote the
longitudinal (irrotational) and transverse (distortional) pulses respectively.
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64 E. R. LAPWOOD ON THE DISTURBANCE DUE TO

Nakano (1925), confining his attention to the two-dimensional case, followed up Lamb’s
formulation of the solution when the line source lies below the surface, but carried out the
approximate evaluation of the integrals by the methods of steepest descents and stationary
phase. This gave more information about the displacements in the neighbourhood of the
source, and a clearer analysis of the part played by each of the singularities of the integrands.
Nakano concluded that there should be observed at a distant point on the free surface, due
to an initial P-vibration, the direct P-wave, the Rayleigh-wave, and also a wave which had
travelled along the surface with the velocity of an S-wave. When he replaced the initial
harmonic vibration by a pulse of arbitrary form, and evaluated his integrals along a different
path, he failed to find the ‘surface S-wave’.

Similarly, examining the disturbances due to an original S-vibration, he obtained S-wave,
Rayleigh-wave, and ‘surface P-wave’. In this case, generalization did show a ‘surface
P-pulse’, which, in contradistinction to the ‘surface S-pulse’, does satisfy a minimum-time
criterion.

o
g h
n;ﬂ
h
o

/. ’ |

o’ o :

/////: } |

S P

distance from epicentre (x)

Ficure 1. Time curves predicted by Nakano.

2 =YhIN(P=7%), %= ph\(a* =), xy=7hIJ(B*=7?)

where £ is the depth of focus and «, f, v, are velocities of P-, S- and Rayleigh-waves respectively.

Nakano drew the time curves shown in figure 1 to illustrate the relationship of the different
pulses, for the case when the original source emits a pulse with both P- and S-components
(explanatory notes have been added and a correction made). He concluded, however
(1925, p. 324): ‘when the distance becomes larger than f2/,/(a?—/f?), two other components
appear, which correspond to the straight lines (marked surface S-wave and surface P-wave).
These are waves which are propagated along the surface, but they are not free surface
waves in the strict sense. The existence of the surface P-wave is possible, but its commence-
ment will not be sharp in comparison with those of irrotational and distortional waves. The
reality of the surface S-wave (due to original P) is not certain, though it is obtained for the
case when the motion is periodic and stationary.’
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A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 65

Muskat (1933) has attacked a similar problem—the reflexion and refraction of pulses
at the interface between two layers of different elastic properties. While he obtains pulses
like the ‘surface P-pulse’ and ‘surface S-pulse’ of Nakano, he has not discussed the dis-
placements of a free surface in a semi-infinite homogeneous solid. Fu (1947) has recently
published a brief investigation of the problem in three dimensions, confining his attention
to the response to a point-source oscillating harmonically; the application of his results
to earthquake phenomena is therefore uncertain.

Two considerations make it desirable to undertake a further investigation of this problem.
The first is the divergence of Nakano’s results from those given by geometrical theory and
their uncertainty (see Byerly 1940). The second is the difficulty of reading all S-phases in
the records of near earthquakes. Jeffreys (1946) writes: ‘ The large scatter of the readings
of §'in normal earthquakes up to 20° is still unexplained; it is clear that the large movements
read as § by most observers are not S, but we still do not know what they are.’

An investigation of the nature of the surface S-wave, if it exists, should help towards the
clearing up of this question. ’

In the following discussion, the problem of the disturbance near the surface of a semi-
infinite medium is set up and solved for the case when the line-source emits a pulse of the
form of a Heaviside unit function. In order to facilitate examination of the ensuing dis-
placement, irrotational and distortional displacement-potentials are kept distinct, and
evaluated for an arbitrary point near the surface, but not necessarily on it.

The form of Riemann surface, and consequent distortion of contour, first introduced by
Sommerfeld (1909) and applied to geophysical problems by Jeffreys (1926 4, 1931), proves
to give more convenient analysis than that of Lamb or Nakano.

2. PRELIMINARY ANALYSIS

While any disturbance which is a function of the time can be regarded either as a com-
bination of waves of different periods and amplitudes, or as a combination of unit functions
of different instants and amplitudes, the latter view is much the more suitable for our purpose.
For a simple harmonic oscillation of infinite duration is totally inadequate as a representa-
tion of an earthquake source, whereas Jeffreys has shown (1931) that a simple unit function
and the response to it give results ‘ probably valid for a wide class of earthquakes’.

We therefore seek the response to an initial disturbance in the form of a unit function

1 L dw=0,t<0
H(t) = — f il 2 ’ .
®) 2m Qe w=1,1>0, (2:1)
where Q is the line parallel to the real axis in the w-plane running from — 00 —ic¢ to 4 00 —ic,
or any equivalent contour.
Ifin any system the response to an initial disturbance e/’ is f{w), then by the principle of
superposition the response to H(¢) will be '

o] S0 %, (22)

provided f(w) is analytic in the region containing the contour 2, and the integral converges.
In some cases, (2-2) may be evaluated by the usual methods; in particular, from Hankel’s

9-2
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66 E. R. LAPWOOD ON THE DISTURBANCE DUE TO

contour integral for the factorial (Gamma) function we obtain the results (Copson 1935,
p. 226)

1 : . 1 . .
] —$ piwr — Yot - —% plwT — 4 § ot . 2-
5 zf wTE e dy = 2(e7)  m i H(T), 5 ZJ w e dy = £(ir): miH(T) (2-3)

We shall meet, however, responses to €7 of which the following definition is typical:
Sw) = wreFpotior  (n p 7 real, $>0) according as % (w) 0, (24)

except within the very acute sector bounded by argw = —}7-¢, ¢ being small. In that
sector f(w) is represented not by (2-4) but by a function which makes a rapid but continuous
transition from w” e*#+7 on the left to w” e~#**i7 on the right of the sector (see §§11, 12, 14).
Unfortunately, the contribution to (2-2) from the part of Q which traverses this small sector
is important but difficult to evaluate. Since, however, f(v) is analytic in the lower half of
the w-plane and f(w)/w— 0 as w— 00, we may replace {2 by the more convenient contour
', which proceeds from — oo to the origin and thence to + oo by two loops below the real
axis and avoiding the sector argw = — {7 -4-¢. On €' the integral converges provided n>>0,
and (2-4) is valid right up to the origin. Then by use of

0
n-1 a—po €08 _ 2 | -2)—in COS
foa) e wrdw = I'(n) (p*+72) sin "

¥ (2:5)
where y = tan~!7/p (Stewart 1940, p. 503), we obtain the value of (2-2) as

1_ 2 | 22\ =in [aimf __ a—in(fr+m) : .
o D) (§2-1%) 0 [ -] (2:6)
We shall use the following results, obtained by inserting particular values of 7 in (2-6) and
in the corresponding formula for f(w) = Fw*eFrotior:

Response to eiv! , Response to H(t)
. . 1 p
+pwtior —_—— . : 2:7
we A sz + T2 ( )
. 1 7
+potior - 2:8
Fowe 77112 i 72 ( )
st etrotion (mp)~tcostyf sin (39 + 1) (2-9)
Fi ot etpotion (mp)~tcostyf sin (Fy —4m) (2-10)

¥ being given by tany = 7/p.

3. EQUATIONS OF MOTION, BOUNDARY CONDITIONS AND DISPLACEMENT POTENTIALS

Let z = 0 be the bounding plane of a semi-infinite medium of isotropic elastic material
of density p and elastic constants A and z. Choose the axes so that the line source / which lies
parallel to and at a depth % below z = 0 is given by x = 0, z = h. We wish to discuss the
disturbance at a point G, distant from F and near to the surface z = 0, due to a cylindrical
pulse emitted from the line-source F.
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A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 67

Let (u,w) be the displacements of the point (x, z) in the (x, z) plane. Then the equations
of motion, in the absence of body forces (Bromwich 1898 has shown that gravity can be
neglected in this problem), are

(A+p) 0A)0x+uV2u = pd®uldt?, (A+u) IA[0z+uVw = pd*w/i, (3-1)

where A = du/dx+0w/dz (Love 1906).
At the free surface, z = 0, the normal and tangential components of stress must vanish,
ie. Z,=0, Z, =0, giving

A(0u/dx+0w[0z) +2udw/dz = 0, Juldz+dw/dx = 0, when z = 0. / (3-2)

In general, the displacement of any point may be expressed as the sum of the gradient
of a scalar potential and the curl of a vector potential, the former corresponding to an
irrotational strain, and the latter to shearing strains only. Thus, in the two-dimensional case,
we may introduce displacement-potentials @, ¥, writing

u=0,+ -V, w=00 P

.= (3:3)
where suffixes denote partial differentiation. Substituting these expresswns into the

equations of motion (8-1), and the boundary conditions (3 2) we obtain

10%0 10%¥ 92 92

e — ~ Y e 1 07 Y o 9 O

V<D~a2 PR vy RTR where V_62+622

and o?® = (1+42u)/p, f* = p/p, so that a, § are the velocities of propagation of P- and S-waves
respectively, with

(3+4)

A, + (A-+2u) @, —2u¥,, = 0 (vanishing of normal stress), |
=0

(3-3)
20, +W,, ¥,

(vanishing of tangential stress), |
when z = 0.

"~ 4. FFORMAL SOLUTION FOR INITIAL P-PULSE

We next construct a function which shall represent a pulse travelling out cylindrically

froin the line-source. The appropriate solution of the wave equation for ® (3-4) which varies
iwT

with time as €i” may be written o = miHi,(wK,) &, (41)

where Ky, =0fe and ©*=a%+(h—2z)?, (4-2)
and Hi, is the Hankel function of the second kind of zero order (Jeffreys & Jeffreys 1946,

p- 544). This function is chosen from the various Bessel functions of zero order because when

| wk, | is large 9

Hij(wk,) ~ —

—z'zm(a’ (4,3)

and so Hiy(w«,) € will represent a wave travelling outwards with velocity a. The factor
m is introduced for algebraic convenience. We note that Hiy(z) =0 as | z | co providing
J(2)<0.

Superposing such solutions, we find that when the time variation of the source is to be
not as €7 but as H(f), the corresponding displacement potential is

@, =5 Hi(ox.) e (4-4)
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68 E. R. LAPWOOD ON THE DISTURBANCE DUE TO
Inserting in (4-4) the relationship
HiO(ZUK“) — g%fw e—iwKycoshu du’ (4.5)
mJo

which is valid for .# (w) <0 (Jahnke & Emde 1945, p. 150), we obtain
b, = Z,J‘ d_@jmeiw(t—(m/a)mshu)du
0 alaw

= —2cosh™! (at/w) H(t—w/a). (4-6)

We proceed to examine the form of the displacement given exactly by (4-6) in order to
be able to check the accuracy of methods of approximation which are used later. Since
®, is the displacement-potential of a P-pulse, the displacement at a distance @ from the
source is in the direction of the radius vector @ and is given by

Vo =30 =~ o (22 —o?)

D, 2t (t w) (47)

This displacement falls from o0 at ¢ = w/a and approaches the limit 2/w as t— oo. Writing
{ = w/a 1 we get, for small values of ar/w,

2 or ar\~} :

Uw
Uz
2
”af_"——m"[—_“—*__——
|@
0 x ¢ 0 at | @
l
| \% Sl
(a) i (b) |

Ficure 2. @, and U, graphed (a) against ¢, () against @.

In figure 2, ®, and U, are graphed (a) against ¢ for fixed @, and (b) against @ for given ¢.
The displacement may be described as a sudden jerk at ¢ = @/a, followed by a gradual
recovery, which is incomplete. The residual displacement varies inversely as the distance.
The infinity at ¢ — @/« represents a failure of the Hankel function to correspond to physical
conditions, as does the infinity at @ = 0. The ‘infinite tail’ characterizes the solution of the
wave equation in two dimensions (Jeffreys & Jeffreys 1946, p. 565; Lamb 1904, p. 28).
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A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM
When the original disturbance is not a P- but an S-pulse, (4-4) is replaced by
1 . . Aw
¥, ~ 5| Hi(weg) 5,
and (4-6) by W, = —2cosh™! (ft/o) H(t—w/f),

where k5 = o/f. In this case the displacement at a distance @ is

__~6W0~~ 26t _
Wo =50 =~ o gipa—on 1= 5):

and is at right angles‘ to the radius vector .

A A

SOCIETY

The expressions (4:4) and (4-8) for @, and ¥ respectively thus represent fairly well the
disturbances in an infinite medium due to an initial explosion or twist at the line-source.
Unfortunately, they are unsuitable for our problem, since the second derivatives which
arise in the boundary conditions lead to very clumsy expressions. The difficulty lies in the

occurrence of both x and z under the radical in @ = ,/[x2+ (A—2z)?]. We therefore seek a
transformation of Hiy(w«k,) into a form which contains ¥ and z in linear combination,

extending a result due to Lamb (1904, p. 4).

OF

As in (4+5 Hi,(zx :gf e-izkacoshu gy nrovided £ (zk,)<0.
0 o 7Jo p -3

Write i, sinhu = {, ik, coshu = &, so that A,du = d{ and A2 = {2 —«2. Then

Hig(zx,) =2 [ el

mJo o

and for real z>0, since cosh « is real and positive all along the original path of integration,
we must choose the sign of 4, so that #(A,) = cosh u % (ix,) > 0. This being so, we can replace
the path of integration in (4-11) by the real axis from 0 to o, since the integral along the

arc at infinity which connects the two paths is zero. This gives

Hig(zx,) = 2 :e-m‘f—g (20, #(w) <0).

A B

reduces to e A« el when x = 0 is
e #A«cos {x ei*,

SOCIETY

—2 f e #acos {x ;ge"‘”‘,
0 @

which must be identical with 7iHi,(w«,) e where @2 = x2+ 22,

OF

sent it by

Po = miHiy(wk,) e = —2 f e~(=2a cos {x/%gei‘”‘,
0

o

Now the solution of the wave equation for @ (3-4) which is an even function of ¥ and

and so the solution which is an even function of x and reduces to miHi(z«,) ' when x = 0 is

When the initial disturbance occurs not at the origin but at x = 0, z = 4, we can repre-
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70 . E. R. LAPWOOD ON THE DISTURBANCE DUE TO

with @? = x2+ (h—z)? for the region 0 <z <& which concerns us. An equal source at the image
point (0, —£%) will be given by
¢, = mHiy(o'k,) e = —2 f e~ ("N cos §x%§ e, : (4-14)
0

o

valid for £>0, z>0, where @'% = x2+ (h+z)2.

We have proved (4:13) and (4-14) for .# () <0, but they are also true in the limit when
#(w) = 0. In that case the branch-points A, = 0 lie on the real axis, and the path of integra-
tion must be indented to pass above the branch-point on the positive half of the axis. Then
the proof given by Lamb (1904, p. 4) becomes applicable.

Thus the complete expression for the initial P-pulse is

. d€ i
(h—z)/\a 0 oiwt .
0 2 ; f cos@x/l e, (4 15)

a

We can now proceed to the formal solution of the problem. We shall work in terms of ¢,
and obtain the solution for @, by applying the operation Q%J e —
' Q

No set of image sources can balance both normal and tangential stress on z = 0, but we
can nullify the normal stress by taking an equal and opposite source at (0, —4). This gives
~ a displacement potential

bo = o—, = — f 4" eMasinh 22, coséx%zei“‘. (416)
0

o

We now add further potentials ¢ and ¢ which are to be constructed so that all the conditions
of the problem are satisfied by the potentials ¢,,+¢ and y-.
Using the relation (1+2u)/u = «3/k% we can rewrite the boundary conditions (3-5)

in the form

(K/25’~2K§c> ¢xx+K/25’¢zz“2Kgc¢xz =0, 2¢xz+¢zzﬂ¢xx =0, When z=0. (4'17)

Atz =0, [¢Or]xx =0, [¢Or]zz =0,
[6o,].. = 4 f teMasinledl et (4-18)
0
The form of (4-18) suggests that ¢ and ¢ must be built up out of expressions like
cos cos
sin é’x et?« and sin {xe*t#'s, where A% ={*—«}. (4-19)

The sign of A, is already determined, but that of 14 is at our disposal. Let us choose it so that
Z (A ﬂ) > 0. Then in order to ensure that ¢ and ¢ vanish as z— 00 we must use the exponential
multipliers e~#A« and e~#s, This suggests for ¢ and ¢ the form

b4 f " (A cos (x+Bsin &x) e~e df 6, (4-20)
0

y—4 f :(Ccos Cx -+ Dsin {x) e=a d{ eio. (4-21)

Substituting from (4-20) and (4-21) into the boundary conditions we obtain two integrals
which must be zero for every point of the boundary. We therefore equate the integrands
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A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 71

to zero, and since the coefficients of cos {x and sin {x must vanish separately, we obtain the
equations for 4, B, C, D: ‘
(202 —«5%) A+ 20, D = 0, 4-22)

(
(20%—«3) B— 204,C = 0, (4-23)
200, A+ (202 —«%) D = —2{ e, (4-24)
—20, B +(202—«%) C =0, (4-25)
(4-22) and (4-24) can be satisfied only if F({) = 0, where
F({) = (202 —«%)?— 40,44 (4-26)

But if F({) + 0 we must have B == 0 and C = 0 to satisfy (4-23) and (4-25). Then solving for
4 and D and substituting we obtain

¢ = IGJ:%C‘(hJFZW cos {xd{ e, | (4-27)
¥ =— SJ‘OOQ(Q—E:(T_—)K%) e Me=2Assin {x d{ e, | (4-28)
0

Hence the formal solution of the problem is given by the displacement potentials @, + ®
and ¥, where ’

1 - dw [ . d¢
_ 10 et - —hAy .
Qo = 2m.fge a) fo (—4) e Masinh {A,, cos gx/la, (4-29)
1 dw 1624 . :
- iwt B —(h+2)Ay .
o ——2m.fge o)y FO e cos {xd(, (4-30)
1 . dw = (—8) { (202 —«3) )
— wt —hAy—zA . )
and oV = i Qe’ ), 7O | e #sin (x dC, (4-31)

where the prefix p means that these potentials refer to an original P-pulse.

5. FORMAL SOLUTION FOR INITIAL S-PULSE

When the original disturbance is an S-pulse, we start from the expression (4-8) for ¥,,.
By transformations identical with those of § 4, except that £ replaces «, we obtain

— _1._ ia)td_w ” — —hAg i gg .
F,, = omi) € wfo (—4) e "esinh 244 cos §x/1ﬁ. (5:1)
Substituting this into the boundary conditions, we find
| _ 1 w788 (202 —Kj) —hAg—zA )
s(I) = 57;—1\[962 _(ITJO w—-m)*— sin é’xe B dg, (5 2)
— 1 iwldw ® 16€2/{°‘ —(h+2)A
F =5 Qe . 0~—~©~cosﬁxe 8dl. (5-3)

We notice the strong resemblance between these expressions and (4-30) and (4-31), but the
interchange of « and f introduces remarkable differences in the interpretation of the
integrals.

VoL. 242. A. 10
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6. POLES OF THE INTEGRANDS ON THE RIEMANN SURFACE

Exact evaluation of the integrals along the {-axis is impossible, and numerical calculation
almost so. We therefore regard { as a complex variable, and distort the path of integration
so as to concentrate the important contributions in certain sections. When the choice of
signs in A, and A, is unrestricted, the integrands are four-valued functions of {, and their
representation needs a four-leaved Riemann surface. The four leaves of this surface can be
so defined as to correspond to the four possible sign-combinations of %(1,) and Z(44). B
our decision that #(4,) >0, #(14) >0, at all points of the path of integration, we have con-
fined it to the leaf of the Riemann surface for which #(4,) >0, Z(1;) >0 everywhere. We
shall call this the “top leaf’.*

The branch-points are the four points { = +-«,, -+, at which A, = 0 or ;= 0, and the
cuts, along which the four leaves coalesce, must be given by Z(1,) = 0, Z(1;) = 0. Let us
write { = ¢+, = s—ic, then #£(1,) = 0 implies that

E2—n2+2n — (52— 2 — 2usc) [
is real and negative. Thus

&p = —sc/a? and E2—p?<(s2—c?)[a?,

and so the cuts from +«, must lie as shown in figure 3 along parts of a hyperbola which has
the axes as asymptotes. Similarly, #(1,) = 0 defines part of the hyperbola &y = —sc/f*.

—KY —f{y
._]{/3 ~ - ﬂ
0 ¢ 0~ Kot g

Ko

(0] Kﬂ fﬁy K’}’Kﬁ
< \

(a) (v).

Ficure 3. Branch-lines and poles in the ¢-plane (a) Z(») >0 and () %(w) <O0.

The integrands have poles at the zeroes of F({). We now proceed to identify these poles,
and to assign the appropriate ones to the top leaf of the Riemann surface.

The algebra is very greatly simplified if we now consider the special (Poisson) case in
which the elastic constants A and x are equal. This is nearly true for most rocks near the
surface of the earth (Jeffreys 1929, p. 86). Small changes in A and x would merely shift
slightly in the {-plane the positions of the zeroes of F({) ; the conclusions reached below would
still remain true.

* This choice of Riemann surface follows naturally from our original expression for the Hankel function.
A different convention of signs for the radicals will lead to a different Riemann surface, as in Lamb’s paper
(1904). Lamb, however (followed by Nakano), indented the path above the singular points on both sides of

the origin, and as a result was forced to take principal values of the integrals and to add a free vibration in
order to obtain progressive Rayleigh waves.
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When A = g, «* = 37, and &, = «//3, where in this (Poisson) case we write « for 5. Then

o =0 gives (22— 2)* = 160G~ 2[3) (¢ 7,
ie. 322 (4;2—-5;—2)(@2— ?’14@ KZ) (gz— ?ii“ﬁ/cf%) —0. (61)

Since (6-1) has been derived by squaring, not all its roots satisfy /() = 0 on the top leaf
of the Riemann surface. Considering them in turn we find that the only roots which lie on
the top leaf are { = -+ (3+4./3)'«/2. These will be denoted by +«,. In the Poisson case
Ky = k[\/3 = 0-58k, and «, = (3,/3)}x/2 = 1-09«. The singularities on the top leaf of the
Riemann surface are shown in figure 3, in the two cases (@) » in the fourth quadrant, and
(b) w in the third quadrant. '

7. DISTORTION OF PATH OF INTEGRATION

Henceforward we shall consider only the region x>0. The analysis for the region x<<0
does not differ in any essential point, other than that all pulses travel in the opposite direction
from the source.

Each of our integrals in the {-plane is of one of the two forms

n =] G0 cos e, (7-1)
X —[ 6©sinrds (1)

where G({) is an even function of { containing a factor of such form as e #4.~#1s
which vanishes exponentially on any arc of the circle at infinity, except possibly in the
neighbourhood of the negative imaginary axis, where G({) is O(1/| {|). Let us write

6=y GO w3 Q) e, (7:3)
=g {60 el — il LG e, (7:4)

When ({ lies in the fourth quadrant, e %*—0 as | {|— oo provided .#({) + 0, and when
{liesin the first quadrant, €*— 0 as | { | > o0, provided.# ({) + 0. Wenow distort the contour,
obtaining different results according as Z(w) Z 0.

(i) Z(w)>0

Distort the path in the first integrals of (7-3) and (7-4) into the positive imaginary axis
together with the first quadrant of the infinite circle. Distort the path in the second integrals
of (7-3) and (7-4) into the negative imaginary axis, together with a loop I' around the
singularities and the fourth quadrant of the infinite circle (see figure 4 (a)). The contribu-
tions from the infinite arcs are zero, and we have

1 [iv . 1 [ _itx 1 —itx .
X‘:éfo G(g)e“?xdg—f-éfo G({) e i dc+§er(€)e & dg, (75)
X2 = élzf {G(8) e d -.%f :w {G(L) emi¢rdg *'Sz-f LG e d. (7-6)

10-2
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By a change of variable we see that the integrals along the imaginary axis cancel, leaving
1 )
=) GO, (77
T
1 .
Xo = — 5] L6 e, (78)
T
‘ +
—Ko,
0 4 0 r' 4
r
Ko, n
(a) (b)

Ficure 4. Distortion of contour in the {-plane. (a) Z(w)>0. () %#(w)<0.
(i) #(w)<0
In this case the singularities on the right of the imaginary axis lie in the first quadrant,

and the distorted path must include the loop I" (see figure 4 ) which contains the points
— Ky, —Kgy —K,. (7°7) and (7-8) are replaced by

1 .
vy GO, | (79)
r
1 .
X~ 5| GO, (7:10)
r
Using the formulae (7-7) to (7:10) we obtain, for the case % (v)>0, the following ex-
pressions: $o = — f e—igx—(h—z)/la%geiwl, (7-11)
r o .
8824, .. .
o= gle e den, (712)
4:8(20%—«? . .
W= _Lﬂpg@l/i) eils==2Ap g i, (7-13)
%0 _ ___f e—-z’(fx‘(h—z)/\lgggeiwt’ ‘ (7]_4)
r A
41 (20> —3) ~ilx~hAg=2Aq Jf oitd
b :L‘—“"F—(@“‘— e B2 4 eit, (7-15)
_ 8§2/1“ —i¢x—(h+2)A it
s!ﬁ _LF(Q') € Bdge’ ] (7 16)

and when Z () <0, we get the same expressions, except that ¢ is replaced by —i, and the
contour I' by I".
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When v is real and positive, the contour takes the limiting form shown in figure 15. This
may be . proved by starting from the integral for ¢, when w is real and following through the
above argument with suitable modifications.

Again, when Z(w) = 0, I" becomes a simple loop from —ico to —¢o0 enclosing the points
Ky kg and &, on the negative axis of imaginaries, while I becomes the mirror image of I'
in the real axis. The integrals along I" and I" are then of course equivalent.

8. INTERPRETATION OF THE INTEGRALS

We now give a general picture of the meaning of the integrals (7-11) to (7-16), taking
w as fixed, | @ | not too small, arg w not too near 0 or — {7, and x large compared with % and z.
This interpretation will indicate the approximate times taken by various waves to reach
the point of reception, and something of their nature. It must, however, be treated with
caution, as suggestive rather than definite, since it refers only to a single complex value of v,
and it is not clear that the same interpretation will hold either in the limit when w becomes
real or pure imaginary, or when the exponential time variation is generalized into a pulse.

First we modify the contour I further, transforming it as shown in figure 5 into three
parts: I',, a loop lying indefinitely near to the branch-line #(1,) = 0; Ty, a similar loop
around #(A,) = 0; and I, a small circle around the pole «,.

0 g

Ka
Kg

I3 Iy

Ficure 5. Further transformation of T'.

We shall require | » | to be large enough for the exponential factor to vary faster than its
multiplier in each integrand, and x/(z+ /) to be large enough for us to take the variation of
et as dominating that of such factors as e~#%==2% in the neighbourhood of the pole and
branch-points.

If the point { describes the contour I',, the modulus of e~#¢ will take its largest value at
k,, and will decrease rapidly as { recedes from «, on either side of the branch-line. So the
major contribution to the integral will come from the neighbourhood of «,, and to a first
approximation we shall have a factor e/¢~*/%), Thus we can say that the parts of the integrals
which arise from this contour will represent waves which have travelled most of the way
from the source to the point of reception with velocity a. The type of displacement potential
gives further information, and we may form the following conclusions (suffixes , # and y
denoting contributions from the loops I, I'; and T, respectively).
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76 E. R. LAPWOOD ON THE DISTURBANCE DUE TO

(a) ,9. represents a wave which started and finished as a P-wave and travelled most of
the way with velocity a. This must be a part of the reflected P-wave, PP.

(6) ,¥.1is a wave which started as P and finished as § and travelled most of the way with
velocity «. Since we know from the reflexion of plane waves that the reflected § from
incident P lies nearer the normal than the reflected P, this must be the reflected S-wave, PS.

(¢) ¥, 1s a wave which started and finished as an S-wave, but travelled most of the way
with velocity «, i.e. as a P-wave. Since the only place where transformations can take place
is the surface, this must be the ‘surface P-wave’, sPs.

(d) .4, started as S and finished as P, travelling most of the way with velocity a. Since the
reflected P-wave from incident S is farther from the normal than the incident S, this must
be the reflected P-wave, SP.

Ficure 6. Waves represented by integrals along I', and I';, (a) initial P-wave, (b) initial S-wave.

These four waves all correspond to minimum-time paths, i.e. their existence is also
deducible by geometrical methods.

In the same way, we can analyze the contributions from the loop I';, and see that these
waves, which all travelled most of the way with velocity £, may be described as follows:

(¢) ,9p: this wavestarted and finished as P, but travelled most of the way as S. We may call
it the ‘surface S-wave’ pSp, noting that, like the Rayleigh-wave, it satisfies no minimum-
time criterion.

(f) ¥4+ this started as P and finished as S, travelling most of the way with velocity f.
It cannot be part of the wave PS, since it seems to have been reflected close to the epicentre.
It will be called the ‘secondary S-wave’ pS. The path is not a minimum-time path.

(g) s$4: this corresponds to (f), having started as § and finished as P, travelling most of
the way with velocity f. Itis the ‘secondary P-wave’ sP, and has not a minimum-time path.

(h) ¥4: this is part of the reflected S-wave, SS.

(z) The values of the contributions from I', depend only on the residues at «,, and so
contain a factor e¢~+/), These waves therefore travel with velocity y and must be identified
as the Rayleigh-waves, R. Longitudinal and transverse displacements arise in both cases. ‘
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Figure 6 gives a diagrammatic representation of the waves other than the Rayleigh-waves
for (a) initial P-wave, and (b) initial S-wave. Of these waves, PP, PS, SS, SP arise in the case
of reflexion of plane waves. The others are all diffraction effects due to the curvature of
the wave-fronts which impinge on the free surface.

In this rough specification, we have been unable to make any statement concerning the
amplitudes of the various waves, or even to assert that pulses corresponding to them will
exist when the initial disturbance is a pulse. We now proceed to more detailed analysis, with
the object of ascertaining the form of response to the initial unit pulse.

9. PATHS OF STEEPEST DESCENT AND STATIONARY PHASE

While the contour composed of I',, I'; and I', seems to lead to a convenient physical
interpretation, it must not be assumed without further discussion that it will provide the
best approximations to the values of the integrals. We shall now consider other possible
contours, and for definiteness examine the behaviour of ,¢ when % (w)>0. We shall not
restrict ourselves to the case where 0, defined by (h+z)/x = tan#, is small. From (4-30),
by a simple change of variable,

‘ p¢ — 8f°° % emibs—(htDAatiot g (9-1)

Following the usual method of steepest descents, we can show that for the integral in
(9:1) the path of steepest descent has the form shown by the continuous line in figure 7,
where H ({ = «,cosf) is the saddle-point.

Ficure 7. Path of steepest descent (continuous line).

When we attempt to distort the real axis into this path, the result depends on the value of
x/(h+z). Figure 8 shows how, as x/(h+z) increases, the path of steepest descent resembles
a parabola of decreasing latus rectum, closing in on the branch-point «,,. The distorted path
of integration must not cross singularities, and so takes the form of figure 8 (a), (4) or ()
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according to the value of /(2 z). This analysis indicates that there are certain minimum
distances at which the Rayleigh-wave and ‘surface S-wave’ first appear. Such a deduction
was first made by Nakano (1925), but one of the puzzling statements in his work is that when
he replaced the path of steepest descent by one of stationary phase no ‘surface S-wave’
appeared.

(a)

Ficure 8. Modified line of steepest descent for ,b. (a) x/(h+2z) <y/y/(a?—y?),
(0) yIN (a2 =% <x|(h+2) < Bl (a? = f%), (¢) x[(h+2) > Bl (a*— /7).

An investigation has therefore been made into the form of the modified contour when
distorted towards the path of stationary phase; the work parallels that described in the
preceding paragraph, and the conclusion is that the same features emerge, including loops
around &4 and «,, under the same conditions on x/(%+z).

When x/(h-+z) is large, the modifications to the path of steepest descent needed to avoid
pole and branch-lines are so extensive that the path of steepest descent comes to resemble
the Sommerfeld contour closely, except in the immediate neighbourhood of the saddle-
point. The modified path of stationary phase, though it cannot be confined to the top leaf
of the Riemann surface, also contains loops around x4 and «,,. The evaluations of the integral

" by the three methods should therefore show results agreeing in their main features, though

they may differ in the accuracy of approximations obtainable.

10. EVALUATION OF INTEGRALS FOR REAL

The loops I, and T'; are convenient for approximate evaluation of the integrals because
we can find a new independent variable which takes only real values upon them. But since
the saddle-points do not lie on these loops the results will lack the sharpness and accuracy of
approximation obtained by steepest descent or stationary phase. If, however, we consider
the limiting case when w is real and positive, the contour of integration takes the form shown
in figure 15 and the saddle-points lie upon it. We can therefore get useful information from
this limiting case. First we give a more adequate justification of its employment than was
given in passing in §§ 4 and 7.

We shall prove the formula

f e"‘"‘g‘(""z)"ud—g = —miHiy(wk,) (10-1)
o /105 0 als
where «, is real and positive; the other symbols have their usual meaning, and I'; is the

contour shown in figure 9. Writing A, = ({—«,)! ({+«,)}, we see that #(4,) vanishes on
the real axis in (— o0, —k,) and (k,, + o) and so changes sign in crossing these segments.


http://rsta.royalsocietypublishing.org/

A\

/ y

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

A \
1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

A LINE SOURCE IN A SEMI-INFINITE ELASTIC MEDIUM 79

Near «,, 4, +./{2¢,({—«,)}, and since Z(4,) =0 we prove easily that .7 (4,) is positive above
the real axis there, and negative below. It follows that .#(1,) takes on I'; the signs shown
in figure 9.

Ficure 9. The contour I').

Then in the left-hand member of equation (10-1) let us write ¥ = wcosf, h—z = wsin b,
{ =k, cosd, A, = +ik,sind on the left and right banks of I respectively to get

B .J‘ioo—i-i‘ﬂ(e_.iw&!cos(e_,ﬂ)+e——iwkacos(0+l9)) dﬂ’ (10'2)
0

where 9 takes the path from 0 to $7 and thence to z 00 4- 7. In the first integrand of (10-2)
write § —% = fw, and in the second 0§+ = iw, to obtain

_f e—iwx,,coshw a'w, (10.3)
C

where C'starts from — o0 4 i(47 —0), runs parallel to the real axis to i(7 —6), then runs down
the imaginary axis to i(— 47 —0), and finally parallel to the real axis to oo +i(—§7—0).
We now write w = ¢+ $im, and (10-3) becomes

__f exawsinhtdt’ (10.4)
Cl

where C’ is the path joining (- oo —if, —if, —il —im, co —if —im). Because wk, is real
and 6 lies in the first quadrant, the end-points of the path €’ can be shifted to — oo and oo —in
without altering the value of the integral. But we have thus obtained a standard expression
for —miHiy(wk,) (Copson 1935, p. 324), and (10-1) is proved.

If we now wish to find an approximation for the integral in (10-1) we can use the form
(10-2) which shows that the first integrand has a saddle-point at ¢ = #, while the second
has none on the path of integration. We therefore evaluate at the one saddle-point, using
Kelvin’s method of stationary phase (Lamb 1932, p. 395), by which

approximately, provided " (x,)/[| /" (%,) |1¥ is small and ¢(x) changes slowly compared with
e/®), Here x, is the saddle-point (point of stationary phase), and the upper or lower sign in
the exponent is used according as f”(x,) 2 0. Applying this theorem to (7-11) we have

¢0 :/\/(2&) eia)(t—'w/ac)+%i7r (106)

Tw
approximately, provided wx, is large.

VoL. 242. A. 11
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Since the exponent in ,@, is identical with that in ¢, except for the sign of z, we can get
an approximation by the same method. When we come to set down the value of the multi-
plier of the exponential at the saddle-point, we note that 4, must be positive imaginary on
the upper edge of the cut, for the same reasons as given for A,. Then we obtain, provided
@'k, is large,

p¢“ = 8A/(120’,,TZ)L(0) eiw(l-—m'/a)wL%iﬂ, (10'7)
cos?@ sin @ /(a?/f%—cos? f) h+z

where L(0) = with tanf = — - (10-8)

(a?/f*—2cos?0)2+ 4 cos?f sin 0 /(a?/f? —cos? §)
To find the expression for the wave PP we must combine (10-7) with —¢, which is given
approximately by oma
— (%) giot-wla+in  when @'k, is large, (10-9)

analogous to (10-6). These two expressions cancel out (i.e. PP changes phase) when

8L(0) =1, (10-10)
i.e. in the case A = y, when

4tanf,/(3tan?0+2) = (3tan?f-+1)2. (10-11)

This is identical with the result obtained by Jeffreys for plane harmonic waves (Jeffreys
19265), as it should be, since we have approximated at a particular value » and a particular
point {.

Turning next to ¥, (7:13), we make the same substitution, with the same rule for signs
of 4, and A4, and we see that when we consider the part of the contour which lies above the
real axis, the exponent is

—ik [xcosd+hsind+z,/(a?/f2—cos?P)]. (10-12)
This is stationary when ¢ satisfies
xsind—hcosd— zcos sin ) = 0. (10-13)

J(@?[f? —cos?d)

If 9, is the root of (10-13), the time of arrival of the wave will be
t = [xcos 9y +hsind, + 2 (a2/f? —cos? )], (10-14)

But (10-13) and (10-14) are reducible to the equations which determine PS by the minimum-
time principle. ,

It may be shown that there is no point of stationary phase on the contour below the real
axis. Thus i, evaluated by this method gives the wave PS, incident at the surface at the
angle J, which is given by (10-13). Using this value of 4 we can evaluate an approximation
for ¥, when xk, is large, corresponding to (10-7).

In this section, by consideration of the limit of the contour I' when w lies on the positive
real axis, we have been able to identify ,¢, and ¥, as PP and PS respectively, obtaining
accurate expressions for their travel times. In the same way we can identify other waves.
But if we wish to generalize from waves to pulses we meet the difficulty that our approxi-
mations hold only as long as w is large enough for the exponential factor in each integrand
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to oscillate rapidly compared with changes in its multiplier. In generalizing from e, we
therefore prefer to use a contour which avoids the neighbourhood of the origin. To do this
we revert to the contours Iy, I'; and I, for complex v, losing accuracy in our approximations
to the travel-time and amplitude, but gaining the power to generalize more effectively.

11. DIRECT AND REFLECTED PULSES

We now evaluate ¢, by approximation on I',. We must consider the cases #(w) 2 0
separately.

0 4

~Ko

Ficure 10. Evaluation along (a) T', for Z(w) >0, (b) T, for Z(w) <0.
(a) %#(w)>0
By (7-11) Go = — f . e""f"‘(”‘z)"aff—ge""" when  Z(w) > 0.

a
If T, lies indefinitely near to the cut #(A,) = 0, we may write 1, = 4+ on I',, where u is
real and positive. The positive sign will refer to one side of the cut, and the negative sign to
the other. The easiest way to determine which sign is positive is to write { = p«,, and consider
the cases p % 1. The facts that «, = (s—ic)/a, and #(A,) must be positive, lead to the con-
clusion that #(1,) must be positive on the left of the cut, and negative on the right, as in
figure 104. Then since { = ./(k2—u?), {d{ = —udu, we get

¢0 _ Z.J‘°° eixl [e—(h—z)iu + e(h—-z)iu] %‘eiwt. (1 1.1)
0
Approximating to { in the denominator by «,, and in the exponent by «, —u?/2«,,
o = ;CQ_z ei“”'ixkafw e« cos (h—z) udu (11-2)
M 0

_/(2madd . 1 (h—z)?

= JC ool [+ 57 ]l (11:5)
provided | xx, | is large and £ (k,) <O0. ‘ (11-4)
(b) #(w)<0

Here By = — f eitr—(h=2q %C eivt R (w) <0
Ty o

and the contour I', has the form shown in figure 10 5. We find that .#(1,) must be negative
on the left of the cut and positive on the right, and with the same substitutions as before

11-2
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except for signs, we obtain exactly the same expression (11-1) as before. Thus (11-3) holds
for all @ not too near the origin and such that . (w) < 0. This is the response to ¢“*. Then the
response to H(¢) when (A—z)/x is small will be ‘

L {2mady 1 3 ior _ (h—2z)* .
D, = (x )%jw e dw, where 7=1(— |:+ o ] (11-5)

-~ oo

by use of (2-3). In this case we can use the approximation (11-3) which is not valid in the
neighbourhood of the origin in the w-plane, since the contour ( can be taken as any line
below the real axis from — 00 —i¢ to 00 —ic. We may compare our expression for @, (11-6)
with the accurate result (4-6)

(D0=—2cosh“1ogH(t—g). (11-7)

7in (11-6) will be a good approximation to {—w/a in (11-7) if x is large compared with £
and z. Writing {—w/a = 7y in (11-7) we get

@, ——4[(“’0) (“T") +o(%%°)%]ﬂ(¢0). (11-8)

(11-6) will be a good approximation to (11-8) if | #—z|/x is small and also if ar,/2w is small,
i.e. at the onset of the disturbance.
The displacements derived from @, as given by (11-6) are

vi@) =20 s [(2) ), (11-9)
W(®,) =?%¢—@;fl/(%) H(r). (11-10)

We notice that these tend to zero as 7 tends to infinity, so that our approximation fails to
record any residual displacement.

Next consider
s,

— 0 P a=ixl—(h+2)A, iwt .
2Ba LFE) e dg e, (11-11)

Since we are taking  large enough for the exponent to vary much faster than the remainder
of the integrand, we take

Ap = J(2—«3) = i J[ (k5 —«2) +u?] =ik, (11-12)

thus defining «; = /(k}—«2), and
F({) = (202 —«3)2= (k}—2¢5)? = &3, (11-13)
defining «,. We shall also use the additional symbols §; and f, defined by |
pri=pf"2—a? f52=[F"2—20"2 (11-14)

£, and f, have the dimensions of velocity, and in the Poisson case

Pr=3bs Fr=J3F=a.
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Evaluating as before we get, provided (£+z)/x is small,
. 2ar\ f3 (h+2) )
,0, 16A/( )a3ﬂ1 2 1), (11-15)
where 7 is now given by T = t—a[x—l—(h—l—z)2/2x]. (11-16)

The complete expression for PP is derived by combining (11-15) with

~®,$2J(2—ZZ)H(T). | (11-17)

From (11:15) and (11-17) we see that at very large distances ,®, is negligible compared
with —®,, but owing to the large numerical factor in the ratio

z
R
(=82 (h+2z)/x in the Poisson case), reversal of phase takes place for a small angle of
incident ray. Our approximation gives the critical value of (A+z)/x as ,/2/16 = 0-0884
which is a poor approximation to the true value of 0-2270 given by (10-11), and shows that
our approximations begin to break down at such short distances, because the Sommerfeld
loop is too far from the saddle-point.

Comparing (11-15) and (11-17) with (11-6) we see that the form of the reflected pulse is
essentially the same as that of the direct pulse—a sharp kick followed by an infinitely
protracted recovery.

In the same way we find, when (%24 z)/x is small,

R 8/(2“7)%22(1 B, zfax) Y H(7), (11-18)
‘where ' 7 =t—xla—z[f; —h?[2(ax—f, 2). (11-19)

Thus the pulse PS is of the same type as the initial pulse, but falls off faster with increasing
distance.

We now turn to the disturbance due to initial S-pulse, and derive the expressmns for the
direct pulse, $S, and SP.

¥, of (7-14) is identical with ¢, of (7-11) except that f replaces . We can therefore write
down the approximations which would be obtained from the loop Iy, valid when |A—z|/x
and f7/x are small:

‘I"O%—QA/(%?—T)H(T), where 7=1i¢— ﬂl: x4 (= Z) ], | (11-20)
and by (3-3), U, = ——;l—z ( xT) H(7), (11-21)
WP, = — J (W) H(r). (11-22)

An equal and opposite pulse from the image source would give

-—‘Fr¢2A/<—2—xﬁz)[{(T), where T—z—ﬁ[ PR ”z) ] (11-23)
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when (h+z)/x and fr/x are small. The reflected pulse SS will be compounded of this and

5. When % () >0, Jo— 80y e iheong oL o (11-24)
8 ) n (D) '

Just as for I, we write 1; = +-iv on the left side of I'y, 15 = —iv on the right. Then
{=J(K5—v®) =ks(1—0226%), A, =+ky, (dl=—vdv and F({)=«}

Thus I#/f SJ(QﬂﬂZ ) /? /Z—{—ZCW, ~lim (11-25)
when (#+-z)/x is small, and 7 is given by (11:23).
When % (w) <0, 2
( ) ¢,ﬂ :J‘ 85(2‘)0; eigx—-(h+z)/\5 dc eiwt

A, = —i on the left of I'; and A5 = +iv on the right,
{=J(k3—v%) = —kp(1—0%/2%) and A, =—
Making these substitutions, and evaluating as usual, we get

2npid\ f h+z cior+in
S;ﬁ,,TsA/( )ﬂl "2 o, (11-26)
Thus sgﬁ/,%Ai%a)"* eior+im  according as #(w) < 0, ' (11-27)
where - SA/(Q”/Q) phiz (11-28)

Considering now the two parts of SS for given w, we see that the amplitudes are in the
ratio | ¥, |/| ¥, | = 8f(h+2)/fy x, which is small when (k-+z)/x is small. The phase of ;,
exceeds that of —¥, by + %7 according as #(w) £ 0, so that the amplitude of the sum of
—, and ¢, differs from | ¢, | by a small quantity of the second order if (£ +z)/x is first order.
This corresponds to the fact that with plane waves for angles near grazing incidence no
energy goes into SP, S§ being reflected with unchanged amplitude but changed phase
(Jeffreys 19265).

The above evaluation of i, differs in one important respect from previous approximations
on I',. Whereas approximations obtained from I', hold (subject to the conditions stated)
as o approaches and crosses the imaginary axis of v, (11:27) holds only as long as I' is not
too near I',. If I';lies so near to T', that contributions to the contour integral in the neigh-
bourhood of «, from I', have to be taken into account, (11-27) breaks down. The same
condition holds near —«,; when %(w)<0. In other words, (11-27) holds only as long as
arg o lies outside — 37+ ¢, where ¢ is a small angle determined by the nature of the integrand
in (11-24). Across this small sector there takes place a continuous transition between the
two expressions given in (11-27). We therefore obtain the response to H(#) as described in
§2, replacing Q by Q' and using the time derivative to avoid encountering a singularity

at the origin, . A )
R «;fo w ¥sin (01— im) dw (11-29)

A [ .-
= —J. o tsin (w1’ +1w) do, writing 77 = —7,

= SJ(Qﬁ)ﬂk+z (). (11-30)
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This approximation differs from that for ¥, only in numerical coefficients and in the occur-
rence of sin (wr— £) in (11-29), where W, has sin (w7 — ) ; it is this difference which distorts
the shape of the pulse.* '

s

0

Ficure 11. S‘i"ﬁ and -—‘i", as functions of 7.

S‘ifﬁ and — V¥, are graphed against 7 in figure 11. Since w = —aqf/ﬁxé‘i’/ﬁ, this figure
shows the form of the vertical displacement. Itis clear that \'¥; does not modify the amplitude
of the disturbance due to —W,, since that lies entirely subsequent to the instant 7 = 0,
whereas ' gives a disturbance preceding 7 = 0. The effect of the term s Vs is therefore to
lead up to the jerk given by —W,, and its relative size decreases with distance from the
epicentre.

The evaluation of (@, is exactly analogous to that of ,'¥",, and the result is, when (4+-z)/x
is small,

sdh#%/(%)i%(l—%)ﬁ%f](r), (11-31)
where T == t—[g—k—ﬁ—/,lz—l—%‘-‘xiigﬁl—)]. (11-32)

This is SP, and its properties can be derived from those of PS by change of sign and inter-
change of / and z, as long as z+ 0. If z = 0, the approximation given in (11-31) vanishes,
and we must consider the contribution from terms which can be neglected as long as z = 0.

12. RAYLEIGH-PULSES
The contributions from the loop T', can be evaluated exactly, since «
but a pole. When { = «,, '
A, = J(E—K3) = 0ly,, where y;?=y"?~a" - (121)
Ay = J((2—K3) = wlys where 732 —y72—f2, (122)

- the positive signs being taken before the radicals, since «,, is on the top sheet of the Riemann
surface and % (w) >0. Then, evaluating the residue at «,,, we obtain, for % (w) >0,

— % —i§x—(h+2)Ay iwt
sPy =8 . F(C)e dCe

— Arie-—pwﬁwr, (12'3)

* The same phenomenon occurs in the horizontal displacement at time x/# in Lamb’s problem (1904,
p. 21 and figure 4).

,is not a branch-point
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where 4, = 1561 e — 4myy (Yot 75+ 27— 47,75+ 2777, 745%) 7, (12-4)
Y1 (k)
p=(h+2)]y, and 7=1t—xfy. | (12-5)

4, is a real constant.

If, on the other hand, we consider % (w) <0, we must choose the negative signs for 4,
and A4, and note that the pole is now at —«, and is encircled in the reverse direction by I7..
In place of (12-3) we obtain

Y
B, = —d,ietboion, (12+6)

(12-3) and (12-6) are adequate expressions for the Rayleigh-wave provided «, is not so close
to I', and I that the integrals along those loops make significant contributions in the neigh-
bourhood of the pole «,, and similarly for —«,, I'; and 1';. That is, (12-3) and (12-6) hold
except within the sector argw = — 7€ (¢ being small), across which there is a rapid but
continuous transition from (12-3) to (12-6). We therefore obtain the response to H(¢) from
. the contour €)', using displacements, which are

u= ?‘ﬁ;—a’eﬂ:ﬁw”w (127)
. according as Z () £ 0.
w = _Ar W etpotior (12'8)
Vo
U
0 7
w

Ficure 12. U and W for the Rayleigh-pulse ,®, as functions of 7.

Using (2-8) and (2-7) respectively, we find the displacements corresponding to initial
unit-pulse

4

T

T 12-9

4, p ‘ '
=T - 12:10
W e (210

U and W are graphed against 7 in figure 12. In each curve, the greatest displacement is
inversely proportional to p = (h+2z)/y,. Thus (12-9) and (12-10) represent a pulse confined
to the neighbourhood of the surface, travelling with velocity y, and whose sharpness decreases
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with increasing depth of focus. This is the Rayleigh-pulse, of which ,®, gives the irrotational
part. The distortional part, given by ,'V,, is found in exactly the same way to be

.

U:_’%p’zurﬂ’ (12:11)
_4_r (12
where 4= 577 (}722 —IZ}_Z) A, p — hly,+zly, and T ={—x/y.

The amplitude of the Rayleigh-pulse contains no x-factor. So in this two-dimensional
case, frictional loss being neglected, the pulse travels along the surface with undiminishing
amplitude.

When the initial disturbance is an S-pulse, the displacements in the Rayleigh-pulse are

4, ¢ 4, q

r

Tyt my,

(12-13)

N S 7
C ML gt Ty, T

(12-14)
where ¢ = (h+2)[75 ¢ = hfy5+2/V,

13. THE SURFACE P-PULSE

So far we have dealt with the features of the disturbance which are geometrically evident
and with the Rayleigh-pulse. We now consider the four remaining integrals, ¥, ,84, ,¥4
and @,, whose contribution to the disturbance, if any, is certainly not evident from the
geometry of reflexion. In this section we deal with i, since the mathematical treatment
follows methods already developed in §11.

By evaluation on I', as before we obtain, when (£ z)/x is small,

2% ) A - BT s, o
where T =t—xja—(h+2)/f. (13-2)
p

0\ |z
S

Ficure 13. Suggested path of \¥,,.

The result (13-1) differs from the formulae for PP, PS, etc., mainly in the occurrence of
¥ in place of 7i. It represents a pulse which started and finished as S, but travelled most of
the way at the surface with velocity «. It can therefore suitably be called the ‘surface
P-pulse’. The value of 7 given in (13-2) corresponds exactly to that of a ray which travelled
as shown in figure 13, with angles of incidence and emergence ¢ = sin~! (§/a).

VoL. 242. A, 12
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If x/(h-z) is large, the displacements are given by
L 20\ 4 oy
U= IGJ(x) A (13-3)
W= 16/(%) ﬁ;‘ir%. (13-4)
x ] atx

Thus the displacements of the surface P-pulse have the same form as the potentials of the
reflected pulses, and consequently, to a first approximation, the velocities of the surface
P-pulse have the same form as the displacements for the reflected pulses, i.c. the disturbance
begins not with a sudden jerk, but with a suddenly acquired great velocity, the initial
displacement being zero. .

It is easily verified that the path shown in figure 13 is a minimum-time path. Moreover,
the magnitude of the disturbance at the point of reception does not decrease as £ and z
increase, i.e. the disturbance is not confined to the neighbourhood of the surface. Thus the
surface P-pulse is not a surface effect analogous to the Rayleigh-pulse, but more of the same
nature as the ordinary reflected pulses. This distinguishes it from the surface S-pulse, next
to be considered, which can only be discerned near the surface, like the Rayleigh-pulse,
and has not a minimum-time path.

14. THE SURFACE S-PULSE
Transforming ,¢, in (7-12) by the usual substitutions on I'; we get, when #(0) >
provided | xw/f | and x/(k-z) are large,
[ (k% —20%)% / (k5 —v?) v2dv
obp=1 6Zf0 (k% —20%)* 4 160% (k% —v?)* (k} —0?)

iV (kgD ~(h+2) V(-2 Hat (14-1)

= }_@ elwr— w[)f v 2xg )2 dv
0

«3 N
= B Jritw~teiorop, ~ (14-2)

wherer = t—x/f, p = (h+2)/f, and B = 8 /2. Similarly, evaluating on I‘/; for Z(w) <0,
3 WPp= B miteteomtho, : (14-3)

This response is a surface wave, with amplitude diminishing downwards as e~¢#+2¢//1,
The phase retardation is x/4.

As with all other approximations from I';, (14:2) and (14-3) cease to hold if I', passes
too close to k,, or I'; too close to —kp, and so here we find the response to H(¢) from €',
again choosing the integrand so as to ensure convergence at the origin.

We therefore examine the velocity

u= ——1—3%6,“/—”#0)* eiwrob  as R (w) 5 0. (14-4)
From this, under certain conditions specified below, we can derive
g 4
Tom)y
i_é ~teost i sin (L +- 1 h _T 14:5
: ﬁp cost ¢ sin (3¢ 4 477)? where tany » (14-5)

by (2:9). U varies with 7 as shown in figure 14.
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The condition for the approximation (14+2) to be valid is that | x0/# | and x/(k+z) shall
be large. Thus the lower limit of | w | for which it may be used decreases as x increases. The
derivation of (14-5) from (14-4), on the other hand, is exact, and so (14-5) will apply provided
the integral from which it is derived receives a negligible contribution from those small
values of |w| for which (14-2) breaks down. It may be shown that the proportion con-
tributed to the integral from such values diminishes as p and 7 decrease.

Thus we may show qualitatively that our approximation (14-5) for U may be expected
to hold provided x is large, # and z are small, and 7 is small enough. Under these conditions,
the surface S-pulse makes its arrival known at ¢ = z/f by a peak in the horizontal velocity,
the sharpness of which increases with the shallowness of focus and reception point. The
horizontal displacement will start gradually.

U

t=x/3 t

\

Ficure 14. U (for pSp) from approximation on I's.

Kot l{ﬁ Ky
0 Dt NN ¢
= U

- Ficure 15. Limiting form of loop I' when  is real and positive.

In order to remove some of the uncertainty of thisresult, we are driven to the procedure—
hitherto avoided—of integrating first with regard to w. To do so, we must disentangle w
from the other variables in the integrand of (14-1), and this is feasible only for real w.

We therefore return to the limiting form of I' for w real and > 0. We have proved in § 10
that the neighbourhood of «, provides expressions for the reflected pulses (from initial
P-pulse), and we are now concerned with the contribution from the loop which runs from
&, around k4 (see figure 15). In the region of this loop, which we denote by I';, all quantities
in the integrand of (14-1) are single-valued except 1, and consequently F({). It we write
{ = kzcos g, we find in the usual way that A, takes the value +ik,sin ¢ on the loop above the
axis, and —ik,sin ¢ below.

12-2
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To avoid questions of convergence of the integral for w, we deal with

u : - SZf _Ci/l_ﬂ_ C—ix§-—(h+z)/\a+imt d(:
l‘ﬂoF (§)

o [eosTipla . . iKgsing —ikgsing
—_ 3 a—ix{—(h+2)A Fiwt _ "8 B
R
16w [oosT Al (2cos?d—1)%cos® ¢ sin? @ dg
B ), (2cos?p—1)*+16 cos* § sin® §(cos® @ — f2/a?)
where _ T =t—xcosdlf, P = (h+2z)/(cos?2d—p2[a?)/f (14-7)
and F, and F_ denote the values of F({) on the upper and lower sides of the loop.
Writing cos ¢ = w, we get 16wl
u —_— ———
Ib) Bla
wi(2w?—1)2,/(1—w?)
(2w?—1)*+ 16w*(1 —w?) (w?—f2[a?)’
T(w) = t—wx/f and P(w) = (h-+z) J(w?—f2/a2) Jp. (14-9)
When w is negative, we use the appropriate signs and obtain the same result (14+8), except
that the sign of P in the exponent becomes positive.

In this case, Q' degenerates into the real axis, and we find that the response to initial unit
pulse is '

ein—wP’ (14.6)

G(w) eoT=oP dy), (14-8)

with G(w) =

161 - 1 . dw
— T iwTHwP
U=y Cwdvy, fﬂ'wg .
_ 16 : G(w) dwfme“"”’ sinwT dw
np Bla - Jo
16 (1
= 2| G(w) E(w) dw, (14-10)
y plo
. 1 T
where E(w) = BP2LT?
_ (ft—wx) (14:11)

(bt 2)% (WP — o) + (Br—wn)?”

(14-10) gives U as a function of x, 4, z and #, but a long series of numerical integrations
would be needed to obtain a close approximation to the true relationship. The shape of the
factor E(w), however, gives us a method of investigating qualitatively the variation of U
with ¢, when (£+z)/x is small.

Given ¢, E(w) has a single zero at w = ft/x, and at large distances from this zero it behaves
like (ft—wx)~!. In the immediate neighbourhood of the zero there are maximum and
minimum at Blh+2z) | 2—x2a?

x x4 (h+2)%’
respectively. When (h+-z)/x is small, and ¢ is not very different from /8, (1412) reduces to

Pt/xTF B(h+2) B %, (14-13)

and the values of the maximum and minimum are
4, /2B(h+-2). (14-14)

w =’[¥:F (14-12)
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From (14-13) and (14-14) we see that the peak and trough near the zero of £E(w) become
very sharp when (4 z)/x is very small; moreover, E(w) is nearly zero everywhere except
in this region. Thus, since U is obtained by integrating the product of the ordinates of G(w)
and E(w) from w = f/a tow = 1, its value will be determined, for given ¢, by the contribution
from the neighbourhood of w = ft/x. If in that neighbourhood G(w) is changing slowly,

015

0-10

0-05

I I I )
0-80 ' 0-90 1.‘30‘
Frcure 16. G(w) and G'(w).

wel!

w=]

Ficure 17. G(w) and E(w). Ficure 18. U and U for »Sp.

the value of U will be small, but if G(w) is changing fast the value of U may be large. G(w),
which is independent of all variables except w and f/«, is plotted in figure 16 for the Poisson
case. From this figure we see immediately that G(w) changes slowly except near w =1,
where the change is very rapid. Figure 17 shows E(w) superposed on G(w). The actual
position of E(w) depends on the value of ¢; the zero of E(w) moves from w = ffa to w =1
as ¢ increases from x/« to #/f. By imagining the ordinates of the two curves in figure 17 to be
multiplied together and the product integrated, we can obtain a qualitative picture of the
behaviour of U as ¢ varies. This is sketched in figure 18. In the same figure is graphed the
slope of this curve, which gives U, and can be compared with the result obtained by the
previous approximation (figure 14).
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The variation in the vertical displacement, W, can be discussed in the same way as that
of U. Approximating on I'; we get '

. Bym., . .
w=+ /),“/ﬂrfw*e"”iﬁ"’ as Z#(w) 0, (14-15)
1

and hence a rough approximation for small 7 and large x/(z+4)

= ﬁ/%p*% cost ¢ sin (3¢ — Lm). (14-16)

FiGure 19. W for pSp from approximation on T'y.

This is plotted in figure 19.

t=a/3 t

G (w)
Ew) w \\ .
w t
13t =
/3;’_' w \/ //
w
Froure 20. G'(w) and E'(w). ' Ficure 21. W and W for pSp.

When we invert the order of integration, we obtain

1
w——250" 6w Ew) dw, (14:17)
. T Jpla '
2 p2/,2
where G (w) = w—-—ﬁ?—/ﬁ G(w), (14-18)
h+z

and E'(w) = (14-19)

(b5 2)” (PP + (P —wx)?”
E’(w) is always positive within the range of integration, with a peak at w = ft/x whose
sharpness increases as (24 z) /x decreases. G’ (w) is plotted in figure 16—its form being similar
to that of G(w). Figure 20 shows E’(w) superposed on G'(w), and from this figure we can form
a picture of the behaviour of W as ¢ varies, which is sketched, with W, in figure 21.

For given x, increase of (- z) lowers and broadens the peak-and-trough of E(w) and the
peak of E'(w), and consequently smooths down the irregularity of U and W near ¢ = x/p.
The disturbance is thus confined to the neighbourhood of the surface, though not by an
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exponential factor. It cannot, however, travel as a self-sufficient pulse along the surface,
preserving its amplitude, since the Rayleigh-pulse alone has this property. Its energy must
be continually supplied by the local incident P-pulse.

From figures 18 and 21 we see that neither the displacements nor the velocities of
the surface S-pulse experience a sudden discontinuity; they start from zero and change
gradually, unlike those of the surface P-pulse sPs.

15. THE SECONDARY S- AND P-PULSES

Finally, we have to consider the two very similar expressions ,'¥'; and ;®,. We could
proceed to find displacements and velocities at a depth z, but the expressions for them are
very complicated. We therefore simplify the algebra by considering the disturbance asso-
ciated with ¥ at z = 0. Retaining only the first terms '

U,=4 /2t cost i sin (3 + 4n), » | (15-1)

o W,+16,/288: % Y~ cost ¢ sin (39 — ), (15-2)
where » T=1t—x/f, p=~r/f; and ¢ =tan~!(7/p). (15-3)

As with the surface S-pulse, (15-1) and (15-2) are valid only in the immediate neighbourhood
of 7 = 0, and when x/(h+z) is large. :

If we now employ the method of the previous section to get a qualitative description of
U, and W, we obtain, on setting z = 0,

8 T 5 |
U, = _?ﬁ’fﬂ/a&‘(w) Py e (15-4)
_ 32 P ’
WO = *ﬂ‘ﬂ— Sa GI(U)) ]~)2—+7—2dw, (15’5)
where T'=t—wx|f, P=hJ(w*—pa?)/p,
Gy(w) = w(2w?—1)3 /(1 —w?)

(2w —1)* - 16wH(1 —w?) (w2 —f%[a?)’
G (w) — LW —1) JI( —w?) (w2 f7[a?) ]

! (2uw?—1)*+16w*(1 —w?) (w?—F2la?)"
If diagrams are made from the expressions (15:1) to (15-6) as before, it becomes clear that
the disturbance at the surface corresponding to ,'¥; is of the same type as that given by the
surface S-pulse. '

;@4 is very different. The approximation on I'; is obtained from that for ,j, by changing
the sign and interchanging z and 4. Ifin the resulting expression we put z = 0, the exponent

becomes ioft— (x-+12/24) 8] (1)
and ;®; represents a pulse which arrives at the surface with a sharp jerk in the displacements

at time (x-+/4?/2x)/f; it is thus a modification of the direct S-pulse. By the usual methods
we obtain, when £/x is small, '

(15-6)
and

Uy=4J2hx Yt H(7), (15-8)
Wy —4,/2hx 787" H(1'), (15-9)
with T=1-—- (x+/zz/2x)/ﬁ" and 7" =-—7. (15-10)

The usual shape of the pulse is distorted in W, as with SS.
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An interesting check on our methods is obtained by inverting the order of integration in
;@4 Retaining z, for reasons which become obvious in the course of the algebra, we have,
by the usual substitutions,

1 0 )
u——2 G,(w) dwf (24 coswT sinw@ —2BcoswT cosw@) e “F du,
ﬂﬂ Bl 0 '
where P=§J(w2—ﬂz/a2), Q =%J(1—w2), T = t—wx/f,

and A= (202 —1)?, B =4w? J[(1—w?) (w>—f2)e2)], G,—w?(2u?—1)/(A2-+BZ).

Splitting up the trigonometric terms we get

N Galu) du 4( =0 r-Q - 5( L +‘ r ]

8 4 P2+T+Q2_—P2—|—T-(}2 P2yTQ2 P2 T—Q?
(15-11)
Similarly
1 } _
w——21" 6w du [A( P Ii*.,—)—B( r+e ., 7T-0 f)]
) g1 P2 THQ? P24 T—(? P24+ T+Q? P2 T—Q°
(15-12)
2 f2/42
where | G =Y g,
If now we put z = 0, P = 0, and (15-11) and (15-12) reduce to
8 A4
UOZ’I-TTB ﬂ/aGZ(T,U) dw-Tz—gQ—z, (15'13)
s (1 ., BT
WOI;E ﬁ/aGZ(U)) dw m’ (15'14:)
“ - R hy(1—w?) :
the expressions E,(w) “ R 00) ~ (Fi—wx) =R’ (15-15)
and | Ej(w0) — ok ft—wx (15-16)

A(12=Q%)  (ft—wx)®—h*(1—w?)

become infinite at the two values of w which make the denominator vanish. These are

Btx+ b (B2 + 22— B282)
w =
h?+-x*

. ' (15-17)

In general, when ¢ is given, these two values are distinct, and if w, is one of them, E, and £
behave like (w—w;)~! at w,. Hence, unless the other factor in the integrand is changing
infinitely fast at w, the integral remains finite (principal values being taken at each dis-
continuity). The only place where the other factor changes infinitely fast is w = 1, and there
it is zero, vanishing like ,/(1 —w). This makes the integrand become infinite like (1 —w)~%,
and consequently the integral converges there.

But if ¢ = /(h2+#2)/f, E, and Ej behave like (w—w,)~? at w, = x//(#2+4?), and the
integral diverges for this value of . Thus the displacements become infinite at time, /(%24 x2) /f
and for no other time, and consequently @, represents, at the surface, a sharp pulse of the
same shape as the direct and reflected pulses.
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It will be noted that if z is not zero, we must revert to the expressions (15-11) and (15-12),
which do not become infinite for any value of ¢. This pulse is sharp only on the surface, and
fades out as the deptﬁ increases. At the surface it is simply a modification of the disturbance
created by the incideit S-pulse and the reflected pulse SS.

16. CONCLUSIONS

We now collect the results of the previous sections, in order to envisage the sequence of
pulses which arrive at the point G, “aking 4 and z to be small compared with x. To economize
description we refer to a displacement which starts with an infinite discontinuity, and tails
off to zero or a finite value, as a ‘jerk’, whereas a displacement without discontinuities in
extent or gradient, but evidencing the passage of a pulse, will be called a ‘blunt pulse’.

§, [Initial P-pulse

Let the initial pulse be a cylindrical explosion at F. In an infinite solid this would cause
an irrotational jerk at G, with a residual displacement inversely proportional to w (§4).
Then in the semi-infinite solid the following sequence of pulses arrives at G:

(a) Direct P-pulse P (given by ,®,, arriving at ¢ = @/a). This is a jerk whose amplitude
at a given time 7 after onset varies at = (§4).

(6) Reflected P-pulse PP (—,®,+,®,,¢ = @'[«): a jerk of opposite sign from P, coming
from the image source, and smaller in amplitude by a factor which is [1—8,/2 (h+z)/x]
(for the Poisson case) when (£+2z)/x is small (§11).

(¢) Reflected S-pulse PS (¥, ¢ = x/a+z|f,+3h*/(ax—f,2)): a jerk. The ratio of the
amplitudes of ,'¥, and ,®, varies as 4/x, so that PS is small when the focus is shallow. The
displacement at 7 is proportional to x~* (§11).

(d) Surface S-pulse pSp (, @y, ¢ = x/f) : a blunt pulse, whose displacements and velocities
show peaks whose magnitude is inversely proportional to x(%+z). This is a true surface-
pulse in that it is confined to the near neighbourhood of z = 0, but it is not able to propagate
itself, and depends on energy supplied by the incident P-pulse. Itisinsignificant unless both
k and z are small (§ 14). _

(¢) Secondary S-pulse pS (,'V, ¢ = /(¥ +2%)/f). This is like pSp except that attenuation
depends only upon % and not on z. Itis a minor disturbance due to the propagation through
the solid of a distortion set up at the surface near the epicentre (§ 15).

(f) Rayleigh-pulse R (,®,+,V,, = x/y): a blunt pulse, attenuated like [(4+2z)/y,]™}
(irrotational part) or [A/y,+z[y,]! (distortional part). This is a true surface wave, which
loses no energy to the interior of the elastic solid, but proceeds with undiminished amplitude
in the direction of x (§12).

II. Initial S-puise
If the initial pulse is purely distortional, the sequence of pulses at G is:
(a) Reflected P-pulse SP (@, t = x/a+h/f, + 422/ (ax—f, k) : a jerk, from reflexion near
the epicentre. Since @,/ cc z/x, it is small when z is small (§11).
(b) Surface P-pulse sPs (,\\¥',, t = x/a- (h+2)/F,). This is not a true surface wave, but is
more like a body wave reflected twice at the surface. The path is a minimum-time path,
travelled with velocity £ to and from the surface, but with velocity « along the surface. The

Vol. 242. A. 13
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displacement of G is continuous, but there is a jerk in velocity. Thus the displacement has
a definite instant of beginning. The amplitude at time 7 varies like x~* approximately (§13).

(¢) Direct S-pulse § (,¥, ¢ = w/f): a jerk, amplitude at time 7 after onset varying as @
(884 and 11).

(d) Secondary P-pulse sP (@, ¢ = /(x*-+4%)[) is a blunt pulse except when G is at the
surface. Then it becomes part of the complicated disturbance at the arrival of the S-pulse
(§15).

(¢) Reflected S-pulse SS (,W'y— 'V, ¢ = @'[f): this is remarkable in that the jerk given by
sV is turned approximately back-to-front—a consequence of the change of phase of each
element of its spectrum on reflexion at the surface. The total displacement is given by the
addition of this to — ¥, which is a pulse opposite in sign to the initial pulse and proceeding
from the image point. Since the ratio of the displacements is proportional to (£ 2z)/x the
modification of — ¥, is small at large distances (§11).

\ A

pUo o

P pS R
(@)
o — p/; / E t

sUp — % SK S\ ¢

(b)

W, e R
ST sP S 6
Vzhh? g"._;__h' x \/:g?-_&-_bz X
oA B B

Ficure 22. Horizontal (U,) and (downward) vertical (W) displacements due to
(@) initial P-pulse and () initial S-pulse.

(f) Rayleigh-pulse R (;®,+,¥,, # = x/y): a blunt pulse, attenuated like [£/y;+2/y,]™"
(irrotational part) and [(A+z)/y,] ! (distortional part) (§12).

Of the above effects, I (a), (8), (¢) and II (a), (¢), (¢) are the same as those which would
arise from an incident plane wave, whereas I (d), (¢), (f) and II (b), (d), (f) are diffraction
phenomena, due to the curvature of the wave-fronts. Of these the Rayleigh-pulse is clearly
the most important.

We are interested especially in the surface disturbances, derived by putting z = 0 in the
above work. Then for an initial P-pulse, P, PP and PS combine, and S, pSp combine. For
an initial S-pulse sPs combines with SP, and S, S and sP combine. The approximations for
U and W at z = 0 on arrival of the various pulses are shown in tables 1 and 2 in order
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of occurrence. Figure 22 (a) and () correspond to these tables, indicating the time of arrival
and the approximate form near that time for each pulse.

Figure 22 cannot give more than a rough sketch of the main features of the dlsturbance

at G, on account of the approximations of this work, but several points of interest emerge.

pulse

0, P
-,0, PP
,0, PP

¥, PS

Ls DS
p‘P'ﬁ pS

¥, sPs

SS
s(Dﬂ sP

¥, SS

}

TABLE 1. INITIAL P-PULSE

where 7=1—x]y, q=hly,

' approximations valid when 0:’ nd M;E—Z are small
time of PP \
arrival U, w,
WEE ST
xaT 2N \wor,
2 h 2
WCEVIR J (xTw) A Tx (&B?r) H)
a h 2 h? 2
(15,0 rar) 70 RN
E ) . Galw) Ey(w) do 2w Eq(w) do
B w(2w? —1)2)(1—w?) 1T
where Gy(w) = (55— 1)4+16w4(1—w2) e D)= BFiTT"z
o 102(2w2 1) JI(A—w?) (w?—p2/a?)] N P
G (w) = (2w2 —1)4+ 16w*(1 —w?) (w?—pB%/a?)’ Es(w) />’P2+ 7?2
T=t—wx/f, P=hy(w—pa?)/p
x A4, AN T A AN\ p
Y (’y 7p)p2+72 | (7 2 )1)2+72
where T=1(—x/y, p="h/y,
TABLE 2. INITIAL S-PULSE
ar h+2z
. . — and —= are small
. approximations valid when x x
time of , .
arrival U, W,
h 20T JiZ] 201
7, ~16 505 () ) Sy () 1
~ed () 710 = ) 710
h
Yet) —d () J )
h ﬂ h
4—J(%) H) g (xﬂT )H( ™) o
= ] () 10 S ool i) 0
x ( , Ar) q | _l(érﬂ_éé) T
4 Y vd AT T\YYa Yol ¢+T°

These tables are illustrated in figure 22, which shows the time of arrival and the approximate form near
that time for each pulse.

13-2
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The arrival of P and the surface P-pulse occurs in each case at a definite instant ; the surface
S-pulse and S, on the other hand, show no definite beginning, growing slowly out of the
previous disturbance. S, however, is a modified jerk, while S is a blunt pulse.

The general reciprocity between the consequences of initial P- and initial S-pulse is most
clearly shown in the Rayleigh-pulse—the coefficient in ,WW; is equal to that in U, while
the ratio of the coeflicients in ,U, and , W is equal to the corresponding ratio in ;U; and (W,
This can be proved by inserting the values of 4 and 4’ and using the equation which gives
the velocity of the Rayleigh-wave.

The reality of the two surface-pulses first suggested by Nakano seems to be proved by this
investigation, and their difference brought out more clearly. The surface P-pulse is like a
doubly reflected pulse, shows a definite beginning, and is not sensitive to depth of focus.
The surface S-pulse, on the other hand, has no definite beginning, resembles the Rayleigh-
pulse except in its failure to persist in its own right, and is very sensitive to depth of focus.
Nakano’s failure to find this pulse by his second method (stationary phase) seems to have
been due to his overlooking a loop on the Riemann surface.

The diffraction effects examined in this paper can be described as pulses only when %/x
is small, and our description of the disturbance is only valid in the neighbourhood of the
critical instants when the pulses arrive. If £/x is not small, the diffraction pattern is very
complicated and smudged ; pulses will not be discernible. Earthquake shocks, however, are
nearly always observed at distances such that #/x is small, so that this case is the one that
concerns us.

Although our results have been obtained on a very restricted hypothesis, there is reason
to believe that they may apply in some degree to the phenomena of near earthquakes. For
such the neglect of the curvature of the earth introduces a small error only. Our hypothesis
of a homogeneous semi-infinite solid means that our work cannot account for phenomena
which are due to stratification (such as Love waves) or variation of velocity with depth, but
those pulses which it does predict should also appear in the more complicated cases. The
specialized form which we have taken for the initial pulse has been shown by Jeffreys (1931)
to be a fair representation of the shock for a wide class of earthquakes.

The treatment of the two-dimensional problem in place of the true three-dimensional
one means that we deal with cylindrical wavefronts instead of the true spherical ones. Lamb
showed, however, in a similar problem (19o4) that the general form of resultant disturbance
at a point of the surface is the same in the two cases, the main differences lying in the different
law of decrease of amplitude with distance, and in the cutting off of the infinite tails which
appear in the two-dimensional case. The essential features of our solution may consequently
be expected to appear in the three-dimensional problem.

Explanations may therefore be suggested for two apparent anomalies in earthquake
records: (a) seismograms of near earthquakes sometimes show Sg as having arrived 1 to 2sec.
before the time at which it would be expected after Pg (Jeffreys 1929, p. 98), and also () ‘up
to about 20°, the S residuals are spread over about 20sec. without any convincing con-
centration of frequency’ (Jeffreys 1946, p. 61). Here Sg, Pg and § have their usual meanings
in seismology. In view of these facts it is worth while to examine in further detail the form
of our S and pS, in order to find out how long before the instant ¢ = ./(x2+42) /f the disturb-
ance might become perceptible.
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The question cannot be answered directly from our previous discussion, since our sim-
plifying assumption of an instantaneous shock at the focus leads to an infinite displacement
at the time of arrival of a jerk at G. Let us therefore modify our assumption of time variation
as H(¢) to time variation as \

ta.n“fzf00 e“‘"sinwtfi—a—). (16-1)

S 0 w

(16-1) has the limit 1w sgn¢ as s— 0. About 70 9, of the total change in tan~!¢#/s takes place
between the values 4-2s of £. This change in our assumption will mean that certain terms
previously neglected must now be taken into account, but the work follows. exactly the
methods used in §§ 11 and 14. Collecting all the terms which contribute to the disturbance
near ¢ = x/f we obtain for the rates of displacement at the surface, by the approximation
for large x/k and small 7:

J(2P)7(8fsin (3¢ —4m) _hsin(3y—im) _ 4Msin (3 +in)  sin (i) o
L B T B T Wi e i i (e e UL

Wo*2J(2ﬂ) ﬂﬁ{sﬁsin (3¢ +4m) hsin 3y +4n) 4 A%sin (3 ;ﬁ—%ﬂ)+4sin (%;ﬁ,_%ﬂ)}

Ap\B (BB () T ha (PRt T [(shp) 2
' (16-3)
where T == t~B(x+h2) ¥ = tan'lg, (16-4)
r __ZC _— _}i r - T’ .
T =1 Iz p_ﬂl and ¥’ =tan 1s+p' (16-5)

(We deal in each case with a rate of displaceiment because it is a change in this
quantity rather than in the displacement which indicates to an observer the arrival
of a pulse.)

In each of (16-2) and (16-3) the first three terms describe the arrival of §, and the last the
arrival of pS. The times of arrival, given in (16-4) and (16-5), are not identical, but for
practical purposes their difference may be neglected. In each equation the second and
third terms give a significant contribution only in the immediate neighbourhood of 7 = 0,
but the first and fourth have a much wider spread. —sin (¢ + 1m)/(s24-72)* has the shape
shown in figure 14: on the steep side of the trough the ordinate falls to 20 9, of its largest
numerical value within 7/s = — 2, whereas on the gentler slope the same value of the ordinate
occurs at 7/s = 38. The first term of U, and the fourth of I, are like the reflexion of this in
the line ¢ = 0, and so they rise to 20 9%, of their numerical maximum when 7/s = —38. The
first and last terms will dominate the middle terms when £ is very small and s is not too small.
s is the parameter which determines the sharpness of the shock at the focus. If we suppose
that shock to have had a duration of the order of 1sec., we may take s = 1, and then if
hf,/85%s is of the order of unity, or smaller, the rate of displacement will attain 20 9, of its
maximum at times of the order of 10sec. before and after /6. As £ increases or s decreases
this spread of the pulse contracts.

The above argument holds only for large values of x/(A+2z). As a check on it we may carry
through the discussion of U, and W, by our second method.
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To simplify the analysis, we work for the case when / is negligible and obtain

! - 2sT 2 T2
pa B [ Mot oy M‘(P??TZP]’ (16-6)
W, l s?— 17 2sT
fﬂ/cx /5’[ My (2 T72)? — M, (}T;“’Taj'z], (16-7)
where T — ﬂ ,
M= U (16-8)
M, = 2w(2w? 1) J(w?—f?[a?) N, (16-9)
M 4w (w2_ﬂ2/062) N) (16'10)
with N = 8w /(1 —w?)

(2w — 1)1 16w (w”—f2o2) (1 —w?)

By a discussion like that of § 14 it can be shown that while the integrals containing A,
and M, are small until ¢ is very near x/f, those containing M, attain just under 20 %, of their
value at ¢ = x/f when ¢ = 0-97x/f. Thus the disturbance may become perceptible at a time
of the order of 0-03x/fsec. in advance of the time x/#. This amounts to about 1-8sec. at
200km. and 9sec. at 1000 km. These figures can only be regarded as giving an order of
magnitude, but they are of the same order as the observed scatter in the readings of S,
and S. Instances of early arrival of §, might therefore be explained directly by the existence
of pS and the form of our S-pulse. The scatter of the S-pulse of seismology, which has a more
complex history than any considered here, may be due to similar reasons.
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